
1

Assignment 3 (Loops and Lists) for COMSPCI 101: Mū Tōrere
Due: 4:30pm, 9th October 2020.

Worth: This assignment is marked out of 30 and is worth 3% of your final mark.

Topics covered:

 Loops and lists

The work done on this assignment must be your own work. Think carefully about any problems you
come across and try to solve them yourself before you ask anyone else for help. Under no
circumstances should you use code written by another person in your assignment solution or give
your code to another student.

Very Important:

This assignment has two sections.

Section A is marked using Coderunner (22 marks). For this section you need to define 11 functions.
The 11 functions, when inserted into the Section B skeleton program, create a single player version
of the game of Mū Tōrere (see the game description below). Each function is described in Section A
of this document and there are two Python skeleton programs which you MUST use to develop the
11 functions.

Section B (8 marks).

Insert the 11 functions from Section A into the Assignment 3 program. The program should execute
without error allowing the user to play the Mū Tōrere game.

Submission

Section A - Functions 1 - 11 are submitted using CodeRunner3.

Section B - Submit your completed Assignment 3 Python program (just one Python file named
"YourUsernameA3.py", e.g., dwil237A3.py) using the Assignment Dropbox:

https://adb.auckland.ac.nz/Home/

Notes:

• This assignment is marked out of 30 and is worth 3% of your final mark. Five marks out of 30 are
assigned for the style of your program (program docstring, meaningful variable names, etc.). Three
marks out of 30 are assigned if your final Mū Tōrere program executes without error.

• You MUST only use the features taught in CompSci 101.

• An example output using the completed program is available at the end of this document.

2

Assignment 3: The game of Mū Tōrere
In this assignment you will be completing Python functions to implement a single player version of
the game Mū Tōrere, which means “Fast Move”. This Māori game is also an opportunity to introduce
you to some te reo Māori (Māori language) terms.

- The pronunciation of Mū Tōrere can be heard here:
https://maoridictionary.co.nz/search?keywords=mu+torere.

- See the “Further information about Mū Tōrere” section for a deeper account of the game.

Mū Tōrere Game Instructions
Aim: The aim of the game is to move your pieces into a configuration that blocks your opponent
from moving.

Starting positions: The papa tākaro (game board) is in the shape of an eight-sided star with eight
playing positions at each of the eight tips and one in the centre. There are nine positions on the
board. The pūtahi (position 0) is in the centre of the board. This is surrounded by eight kēwai
positions (1-8).

Each player has four perepere (play pieces). To set up the game, each player’s perepere are
positioned on one-half of the kēwai (external points) on the board. The pūtahi is always empty in the
initial configuration. An example of the initial game positions (labelled 0 to 8) are as follows:

 3
 ֍
 2 . 4
 ֍ ˍˍˍˍ./ \.ˍˍˍˍ ֍
 '. .'
 1 _.-' 0 '-._ 5
 ֍ '-. [] .-'
 .' '.
 8 ˉˉˉˉ'\ /'ˉˉˉˉ 6

 '
 7

Player 1 (the computer) is ֍ and Player 2 (you) is . An empty position is represented by [].

Rules of movement:

- You may move to an empty connected position. You cannot jump over another perepere.

- If you are in a kēwai position (1-8), you can move to an adjacent position in that range if it is
unoccupied. (Note that 1 and 8 are adjacent.)

- If you are in a kēwai position (1-8) and the flanking kēwai DO NOT BOTH contain perepere from
your team, you can move to the pūtahi (position 0) if it is unoccupied.

- If you are in the pūtahi position (0), you can move to a kēwai position (1-8) if it is empty.

3

You can see examples of Mū Tōrere being played in the following videos:

(1) https://www.youtube.com/watch?v=Y2L66uNTAFw and

(2) https://www.youtube.com/watch?v=zeh3NQbGjUg.

Mū Tōrere Glossary of te reo Māori terms:
Papa tākaro (game board)

Kēwai (points): the eight positions on the outside of the game board. Sometimes called
kāwai (tentacles). (These are referred to as positions 1 to 8 in our assignment.)

Pūtahi (centre position): the position in the centre of the eight outer positions on the board.
(This is position 0 in our assignment.)

Perepere (stone playing pieces): each player has four perepere. There are eight perepere in
total.

Mā te wā. (Until next time.)

Ka rawe! (Excellent!)

Kia tūpato! (Be careful!)

Kia kaha! (Be strong, keep going!)

Assignment 3 Section A (22 marks)
For this section you need to develop 11 functions described in Section A of this document. Each of
the functions are to be done in IDLE and then submitted using CodeRunner3. Download the two
Python skeleton programs from the CompSci 101 assignments website:

https://www.cs.auckland.ac.nz/courses/compsci101s2c/assignments/

The following two programs must be used to develop the 11 functions used in the Mū Tōrere game.

• Use the A3Functions1To6.py program to complete and test functions 1, 2, 3, 4, 5 and 6.

• Use the A3Functions7To11.py program to complete and test functions 7, 8, 9, 10 and 11.

Once you are happy that a function executes correctly, submit it to CodeRunner:

https://coderunner3.auckland.ac.nz/moodle/

Section A
The skeleton code for each of the Section A programs is provided. Each program requires you to
complete the functions. Develop and test your functions in the testing programs in
A3Functions1To6.py and A3Functions7To11.py. When you are happy with your code, you can
further test that the function is correct by pasting the whole function—including the header—into
CodeRunner3 and pressing the CHECK button.

4

After the description of each of the 11 functions there is a textbox with some example code and
below it a textbox containing the expected output for that code.

Q1) initialise_list. (Initialising a list)
Requirement: A function is required to reset the list that is used to store game moves for the
purposes of replay if a new game is begun.

Assignment Task: Complete the function initialise_list() that returns an empty list.

Example code:

current_game_move = initialise_list()
print(current_game_move)
Output:

[]

<-----*----->

Q2) concatenate_move. (Concatenating lists.)
Requirement: A function is required to concatenate the latest move to a running list of game moves
(that can later be used for the purposes of replaying the game).

Assignment Task: Complete the function concatenate_move(existing_moves, new_move) that
takes a list argument, existing_moves, and an integer argument, new_move, and returns a new list
that concatenates two lists: existing_moves and new_move (converted to a list).

Note: You must use list concatenation to answer this question.

Example code:

move_list = [1,8,0,1]
move_list = concatenate_move(move_list, 8)
print(move_list)
move_list = concatenate_move(move_list, 7)
print(move_list)
Output:

[1, 8, 0, 1, 8]
[1, 8, 0, 1, 8, 7]

<-----*----->

Q3) move_piece. (Update elements in a list in place)
Requirement: A function is required to update the positions of perepere on the board when a player
makes a move.

Assignment Task: Complete the function move_piece(pos_list, from_position, to_position) that
updates a list of integer values of 0, 1 and 2. The function takes pos_list, a list of integer elements
that represent which player’s piece is in each position in the board. The index value of each element
in pos_list is the position on the board (0 to 8). The possible values of the elements in pos_list are

5

the integers 0 (empty space), 1 (player 1’s perepere), and 2 (player 2’s perepere). The integer
from_position is the index value of the position in pos_list that a player piece is moved from. The
integer to_position is the index value of the position in pos_list that a player piece is moved to.

Update pos_list in place by copying the element in pos_list at index from_position to the index
to_position. Set the pos_list element at index from_position to the integer 0.

Example code:

position_list = [0,1,1,1,1,2,2,2,2]
move_piece(position_list, 1, 0)
print(position_list)
move_piece(position_list, 8, 1)
print(position_list)
Output:

[1, 0, 1, 1, 1, 2, 2, 2, 2]
[1, 2, 1, 1, 1, 2, 2, 2, 0]

<-----*----->

Q4) find_empty_position. (Locate an element in a list.)
Requirement: A function is required to identify the empty board position.

Assignment task: Complete the function find_empty_position(pos_list) that returns an integer that
is the index of the element in pos_list that has a value of 0 (indicating an empty position on the
board).

Example code:

position_list = [0,1,1,1,1,2,2,2,2]
empty_point = find_empty_position(position_list)
print(empty_point)
position_list = [1,1,0,1,1,2,2,2,2]
empty_point = find_empty_position(position_list)
print(empty_point)
Output:

0
2

<-----*----->

Q5) get_next_move. (While loop. Use in operator.)
Requirement: A function is required for the user to input the position of the piece that they wish to
move (or to exit the game).

Assignment Task: Complete the function get_next_move() that prompts the user to enter a valid
response and returns a string variable with the user input in uppercase when a valid response is
entered by the user. Valid responses are specified in the valid_response list
(["0","1","2","3","4","5","6","7","8","Q","QUIT","EXIT"]).

6

The user input is converted to upper case and is checked to see whether it occurs in the
valid_response list. If the string is in the list, then the function returns a string variable with the valid
response. If the string is not in the list then the function prompts the user for a valid response again
until a valid response is entered. The prompt should look like the examples below.

(Note: Do not use a for…in loop in this function.)

Example code:

next_move = get_next_move()
print(next_move)
next_move = get_next_move()
print(next_move)
Output (with user input in magenta):

Which piece do you want to move (or Q to quit)? y
Which piece do you want to move (or Q to quit)? 9
Which piece do you want to move (or Q to quit)? 3
3
Which piece do you want to move (or Q to quit)? q
Q

<-----*----->

Q6) suggest_valid_move. (Access an item from a list and assign it to a variable.)
Requirement: From a list of available moves, this function must randomly select one of those moves.
This function is used for the computer player to select a move.

Assignment Task: Complete the function suggest_valid_move(pos_list, player) that returns a string
that is a randomly selected element from a list.

Detailed instructions: The function suggest_valid_move() calls another function,
list_valid_moves(pos_list, player), passing it the same arguments that are passed to the
suggest_valid_move() function, namely, pos_list and player. The list_valid_moves() function will
return a list of string elements. (You do not need to code the function list_valid_moves() to answer
this question. See the note below.) From the list of strings that are returned by list_valid_moves(),
the suggest_valid_move() function must randomly select one string from the list and return this
value. If the list returned from calling the list_valid_moves() function is empty then
suggest_valid_move() will return the string “00” (i.e., two zeros).

(Note: for development purposes, the skeleton program for this question uses a program stub for
the function list_valid_moves(pos_list, player). This means that the version of
list_valid_moves(pos_list, player) that is listed in this skeleton program is sufficient for our testing
purposes but is not to be submitted in Section B of this assignment.)

Example code:

get_move = suggest_valid_move([1,1,0,1,2,2,1,2,2], 1)
print(get_move)
get_move = suggest_valid_move([1,1,0,1,2,2,1,2,2], 2)
print(get_move)
Output (note that this is an example only. Actual results may differ because of random selection.):

7

02
00

<-----*----->

Q7) new_game_positions. (Creating a new list. For…in range() loop. Returning a list with specified
ordering. Appending list items.)
Requirement: Players will not want to start in the same positions each time. Create a function that
generates a different configuration of starting positions that conform to the rules of the game.

Assignment Task: Create a function new_game_positions(start_index) that takes an integer value
specifying the position of the first Player 1 piece in the starting sequence of four Player 1 pieces.
new_game_positions() returns a list of integers that represent what kind of piece is in each position.
Remember that positions 1 to 8 are in a circle on the game board so, for example, calling this
function with a start_index of 6 will return the list [0,1,2,2,2,2,1,1,1]. The list object that is returned
by the function must satisfy the following criteria:

- The list contains nine elements: one element for each position in the board. The index
number of each element is the corresponding position on the board. (For example, the
list element with the index of 0 will contain information regarding the centre position on
the game board.)

- In each new game, the central position is empty. To represent this, the very first element
of the generated list must always contain the integer zero (0), which represents an
empty space in the centre of the board.

- The next eight list elements will either be an integer value of 1 or of 2. (These integer
values represent whether Player 1 or Player 2 have their playing piece in that position on
the board, respectively.)

- The list will always contain one 0, four 1s and four 2s as integer elements in the list
(though the exact order will be specified by the value of the start_index argument).

- The list itself must contain four consecutive elements with an integer value of 1 and/or
four consecutive elements with an integer value of 2.

(Note: you must use a for...in range() loop in this function. When adding the elements to the list that
represent the starting positions for Player 1 and Player 2, you must use the list append method.)

Example code:

new_game = new_game_positions(1)
print(new_game)
new_game = new_game_positions(5)
print(new_game)
new_game = new_game_positions(7)
print(new_game)
Output:

[0, 1, 1, 1, 1, 2, 2, 2, 2]
[0, 2, 2, 2, 2, 1, 1, 1, 1]
[0, 1, 1, 2, 2, 2, 2, 1, 1]

<-----*----->

8

Q8) get_perepere. (Accessing an element in a list.)
Requirement: When reprinting the game board on the screen after a user moves, a function is
required to retrieve the text to be displayed at a particular board position to show the user which
piece is there (or else whether that position contains no player piece).

Assignment Task: Complete the function get_perepere(position, position_list) that returns a string
with a length of three characters that is used to display which player is at a specified position. The
function takes two arguments. The argument position is an integer that contains a value between 0
to 8 inclusive, specifying the position that the string will be generated for. The second argument
position_list is a list object containing integer values of either 0, 1 or 2, indicating an empty position,
that player 1 is in that position, or that player 2 is in that position, respectively.

You will need to call the get_perepere_char() function that takes a single integer parameter – 0 for
an empty position, 1 for player 1 and 2 for player 2, and returns a string representing the equivalent
perepere symbol on the game board. If the parameter is 0, the get_perepere() function should
return the string obtained from the get_perepere_char() function surrounded by a pair of square
brackets. Otherwise the get_perepere() function should return the string obtained from the
get_perepere_char() function surrounded by a space on either side.

(Note: the function get_perepere_char(perepere_type) is provided for your reference here and in
the skeleton program. You can assume that this function is already implemented in CodeRunner.

def get_perepere_char(perepere_type):
 if perepere_type == 1:
 perepere_char = "֍" # Player 1 (computer)
 elif perepere_type == 2:

 perepere_char = " " # Player 2 (user)
 else:
 perepere_char = " " # Empty position
 return perepere_char
)

Example code:

position_list = [0,1,1,1,1,2,2,2,2]
print(get_perepere(0,position_list))
print(get_perepere(1,position_list))
print(get_perepere(5,position_list))
Output:

[]
 ֍

<-----*----->

Q9) replay_game. (Loop through elements in a list)
Requirement: Allow the user to replay a finished game move-by-move.

Assignment Task: Complete the function replay_game(pos_list, move_list) that prints each move by
each player. The function takes the integer list pos_list that specifies the starting positions on the
game board (papa tākaro). pos_list has nine elements, each element representing a position on the

9

board (0 through 8), and each element containing an integer value of 0, 1, or 2 depending on
whether the position is empty (0), contains a player 1 perepere, or contains a player 2 perepere. The
integer list move_list specifies the board position that each player moves their piece from—starting
with player 1’s first move and then alternating with player 2’s next move, then player 1’s next move,
and so on.

You must loop through the move_list list, updating pos_list with the latest positions of perepere on
the board. For each move, you must print a string of the form “>> Player 1 moves from 6
to 0”, correctly displaying the player number, the position that the player is moving from, and the
position that the player is moving to. You must use the draw_papa_taakaro(pos_list) function to
display the game move. After displaying the first move, you must prompt the user to "Press ENTER
to continue." before continuing to any subsequent move.

(Note: the draw_papa_taakaro() function is supplied in the skeleton program. For another example
of a game replay, see the “Example output” section later in this document.)

Example code:

pos_list = [0,1,1,1,1,2,2,2,2]
move_list = [1,8]
replay_game(pos_list, move_list)
Output (with user hitting the ENTER key marked in magenta):

 3
 ֍
 2 . 4
 ֍ ˍˍˍˍ./ \.ˍˍˍˍ ֍
 '. .'
 1 _.-' 0 '-._ 5

 ֍ '-. [] .-'
 .' '.
 8 ˉˉˉˉ'\ /'ˉˉˉˉ 6
 '
 7

Replaying game:

>> Player 1 moves from 1 to 0

 3
 ֍
 2 . 4
 ֍ ˍˍˍˍ./ \.ˍˍˍˍ ֍
 '. .'
 1 _.-' 0 '-._ 5
 [] '-. ֍ .-'
 .' '.
 8 ˉˉˉˉ'\ /'ˉˉˉˉ 6
 '
 7

Press ENTER to continue.[ENTER]
>> Player 2 moves from 8 to 1

 3
 ֍
 2 . 4
 ֍ ˍˍˍˍ./ \.ˍˍˍˍ ֍
 '. .'

10

 1 _.-' 0 '-._ 5

 '-. ֍ .-'
 .' '.
 8 ˉˉˉˉ'\ /'ˉˉˉˉ 6

 [] '
 7

Press ENTER to continue.[ENTER]
End of game replay.

<-----*----->

Q10) get_moves_to_keewai. (loop through elements in a list)
Requirement: Assuming that a kēwai position (outer point) is empty, a function is required to get a
list of possible positions from which the current player might move one of their perepere (playing
pieces) to that empty position. The player could possibly move to that position from the pūtahi
(centre position) if they have a perepere there, or from either side of the vacant kēwai if they have
perepere in either of those positions.

Assignment Task: Complete the function get_moves_to_keewai(pos_list, empty_point, player,
pos_options) that returns an updated list of string elements, pos_options, with each string element
appended by this function representing a possible valid move to the empty kēwai (an outer
position).

The integer list pos_list contains nine elements. The index of each element corresponds to the
position on the board. The value of each element in pos_list represents the current state of that
position on the board. Valid values are 0, 1, or 2 depending on whether the position is empty (0),
contains a player 1 perepere, or contains a player 2 perepere.

The integer empty_point contains the index of the element in pos_list that has a value of 0 (i.e., that
point is empty). The variable player contains an integer value representing the current player. There
are two possible values: the integers 1 or 2 (representing player 1 or player 2, respectively).

- If the pos_list element with index 0 equals the player then the function must append a
string element to pos_options. The format of this two-character string element is zero
(“0”) concatenated with the empty_point.

- Check both of the “kēwai” elements in the positions adjacent to empty_point. (Both will
have an index value in the range 1 to 8. Also 1 and 8 are adjacent.). For either of the
adjacent elements, if the value of that integer element is equal to player then this is a
potentially valid option and the function must append another string element to
pos_options. The format of this two-character string element is the index value of that
adjacent position concatenated with the empty_point.

Example code:

pos_list = [2,0,1,1,1,2,2,2,1]
spare_point = 1
player = 1
pos_options = ["00"]
pos_options = get_moves_to_keewai(pos_list, spare_point, player, pos_options)
print(pos_options)

Output:

['00', '81', '21']

11

<-----*----->

Q11) get_moves_to_puutahi. (loop through elements in a list)
Requirement: Assuming that the pūtahi (central position) is empty, a function is required to get a list
of possible positions from which the current player might move one of their perepere (playing
pieces) from a kēwai (outer position) to the pūtahi.

Assignment Task: Complete the function get_moves_to_puutahi(pos_list, player, pos_options) that
returns an updated list of string elements, pos_options, with each string element appended by this
function representing a possible valid move from a kēwai (an outer position) to the pūtahi (central
board position).

The function must check the elements in the integer list pos_list from index values of 1 to 8 (the
kēwai positions) to check which player’s piece is in that position. The variable player contains an
integer value representing the current player. There are two possible values: the integers 1 or 2
(representing player 1 or player 2, respectively).

For each element in pos_list, if the element value matches the player value then the function needs
to check whether there is an opponent’s piece in either of the kēwai adjacent to that piece. For
example, if the player is 2, and pos_list index 3 is 2, then the function needs to check whether either
pos_list index 2 or pos_list index 4 contains a value of 1, which represents an opposition player
piece in an adjacent position. (Also, note that positions 1 and 8 are adjacent on the game board.)

If an element in pos_list matches the player value and there is an opponent’s piece in an adjacent
position, then this represents a valid move and the function must append a string element to
pos_options. The format of this two-character string element is the index value of the current
pos_list element concatenated with a zero (“0”).

Example code:

pos_list = [0,1,1,1,1,2,2,2,2]
player = 1
pos_options = ["00"]
pos_options = get_moves_to_puutahi(pos_list, player, pos_options)
print(pos_options)
Output:

['00', '10', '40']

<-----*----->

Assignment 3 Section B (8 marks)
Once you have completed the 11 functions from Section A, download the Assignment 3 skeleton
program from the CompSci 101 assignments website:

https://www.cs.auckland.ac.nz/courses/compsci101s2c/assignments/

Rename the file: "YourUsernameA3.py", e.g., dwil237A3.py. Add your 11 functions from Section A to
the program and check that the program executes correctly. Submit your completed Python
program using the Assignment Dropbox:

https://adb.auckland.ac.nz/Home/

12

IMPORTANT: Your program MUST include a docstring at the top of the file (containing your name,
your username and a correct description of the program) and your program MUST be named
correctly (i.e. as stated above).

Example output
Below is some output produced by the completed program. Your program must execute in the way
described and the output should have the same format as the output below. The player input is
shown in a bold magenta coloured font.

 -----Mū Tōrere-----
Instructions:
The aim of the game is to move your perepere (play pieces) into a configuration
that blocks your opponent from moving.
Each player has four perepere. Player 1 (Computer) is ֍ and Player 2 is .
There are nine positions on the board. The the pūtahi (position 0) is in the
centre of the board. This is surrounded by eight kēwai positions (1-8).
- You may move to an empty connected position. You cannot jump another perepere.
- If you are in a kēwai position (1-8), you can move to an adjacent number in
that range if it is unoccupied. (Note that 1 and 8 are adjacent.)
- If you are in a kēwai position (1-8) and the flanking kēwai DO NOT BOTH
contain perepere from your team, you can move to the pūtahi (position 0)
if it is unoccupied.
- If you are in the pūtahi position (0), you can move to a kēwai position
(1-8) if it is empty.

Player 1 move: 1 to 0

 3
 ֍
 2 . 4
 ֍ ˍˍˍˍ./ \.ˍˍˍˍ ֍
 '. .'
 1 _.-' 0 '-._ 5

 [] '-. ֍ .-'
 .' '.
 8 ˉˉˉˉ'\ /'ˉˉˉˉ 6

 '
 7

Which piece do you want to move (or Q to quit)?: 8

 3
 ֍
 2 . 4
 ֍ ˍˍˍˍ./ \.ˍˍˍˍ ֍
 '. .'
 1 _.-' 0 '-._ 5
 '-. ֍ .-'
 .' '.
 8 ˉˉˉˉ'\ /'ˉˉˉˉ 6
 [] '
 7

Player 1 move: 0 to 8

 3
 ֍
 2 . 4
 ֍ ˍˍˍˍ./ \.ˍˍˍˍ ֍
 '. .'
 1 _.-' 0 '-._ 5

 '-. [] .-'
 .' '.
 8 ˉˉˉˉ'\ /'ˉˉˉˉ 6
 ֍ '

13

 7

Which piece do you want to move (or Q to quit)?: 8

Invalid move! Kia tūpato!

Which piece do you want to move (or Q to quit)?: 1

 3
 ֍
 2 . 4
 ֍ ˍˍˍˍ./ \.ˍˍˍˍ ֍
 '. .'
 1 _.-' 0 '-._ 5

 [] '-. .-'
 .' '.
 8 ˉˉˉˉ'\ /'ˉˉˉˉ 6
 ֍ '
 7

Player 1 move: 8 to 1

 3
 ֍
 2 . 4
 ֍ ˍˍˍˍ./ \.ˍˍˍˍ ֍
 '. .'
 1 _.-' 0 '-._ 5
 ֍ '-. .-'
 .' '.
 8 ˉˉˉˉ'\ /'ˉˉˉˉ 6
 [] '
 7

Which piece do you want to move (or Q to quit)?: 7

 3
 ֍
 2 . 4
 ֍ ˍˍˍˍ./ \.ˍˍˍˍ ֍
 '. .'
 1 _.-' 0 '-._ 5
 ֍ '-. .-'
 .' '.
 8 ˉˉˉˉ'\ /'ˉˉˉˉ 6
 '
 7
 []

You win! Ka rawe!
Play again (Y or N or R for replay)?:r
 3
 ֍
 2 . 4
 ֍ ˍˍˍˍ./ \.ˍˍˍˍ ֍
 '. .'
 1 _.-' 0 '-._ 5

 ֍ '-. [] .-'
 .' '.
 8 ˉˉˉˉ'\ /'ˉˉˉˉ 6

 '
 7

Replaying game:

>> Player 1 moves from 1 to 0

 3
 ֍
 2 . 4

14

 ֍ ˍˍˍˍ./ \.ˍˍˍˍ ֍
 '. .'
 1 _.-' 0 '-._ 5
 [] '-. ֍ .-'
 .' '.
 8 ˉˉˉˉ'\ /'ˉˉˉˉ 6
 '
 7

Press ENTER to continue.[ENTER]
>> Player 2 moves from 8 to 1

 3
 ֍
 2 . 4
 ֍ ˍˍˍˍ./ \.ˍˍˍˍ ֍
 '. .'
 1 _.-' 0 '-._ 5
 '-. ֍ .-'
 .' '.
 8 ˉˉˉˉ'\ /'ˉˉˉˉ 6

 [] '
 7

Press ENTER to continue.[ENTER]
>> Player 1 moves from 0 to 8

 3
 ֍
 2 . 4
 ֍ ˍˍˍˍ./ \.ˍˍˍˍ ֍
 '. .'
 1 _.-' 0 '-._ 5
 '-. [] .-'
 .' '.
 8 ˉˉˉˉ'\ /'ˉˉˉˉ 6
 ֍ '
 7

Press ENTER to continue.[ENTER]
>> Player 2 moves from 1 to 0

 3
 ֍
 2 . 4
 ֍ ˍˍˍˍ./ \.ˍˍˍˍ ֍
 '. .'
 1 _.-' 0 '-._ 5

 [] '-. .-'
 .' '.
 8 ˉˉˉˉ'\ /'ˉˉˉˉ 6
 ֍ '
 7

Press ENTER to continue.[ENTER]
>> Player 1 moves from 8 to 1

 3
 ֍
 2 . 4
 ֍ ˍˍˍˍ./ \.ˍˍˍˍ ֍
 '. .'
 1 _.-' 0 '-._ 5
 ֍ '-. .-'
 .' '.
 8 ˉˉˉˉ'\ /'ˉˉˉˉ 6
 [] '
 7

Press ENTER to continue.[ENTER]
>> Player 2 moves from 7 to 8

 3

15

 ֍
 2 . 4
 ֍ ˍˍˍˍ./ \.ˍˍˍˍ ֍
 '. .'
 1 _.-' 0 '-._ 5
 ֍ '-. .-'
 .' '.
 8 ˉˉˉˉ'\ /'ˉˉˉˉ 6

 '
 7
 []
Press ENTER to continue.[ENTER]
End of game replay.
Play again (Y or N)?:y

Player 1 move: 6 to 0

 3
 ֍
 2 . 4

 ˍˍˍˍ./ \.ˍˍˍˍ ֍
 '. .'
 1 _.-' 0 '-._ 5

 '-. ֍ .-' ֍
 .' '.
 8 ˉˉˉˉ'\ /'ˉˉˉˉ 6

 ' []
 7

Which piece do you want to move (or Q to quit)?: 7

 3
 ֍
 2 . 4

 ˍˍˍˍ./ \.ˍˍˍˍ ֍
 '. .'
 1 _.-' 0 '-._ 5
 '-. ֍ .-' ֍
 .' '.
 8 ˉˉˉˉ'\ /'ˉˉˉˉ 6
 '
 7
 []

Player 1 move: 0 to 7

 3
 ֍
 2 . 4
 ˍˍˍˍ./ \.ˍˍˍˍ ֍
 '. .'
 1 _.-' 0 '-._ 5

 '-. [] .-' ֍
 .' '.
 8 ˉˉˉˉ'\ /'ˉˉˉˉ 6

 '
 7
 ֍

Which piece do you want to move (or Q to quit)?: q

Until next time! Mā te wā!

16

Further Information about Mū Tōrere
A description of Mū Tōrere from Harko Brown [Ngā Taonga Tākoro pp. 15-16]:

 History

Board games were played prolifically by ancient Māori. The night sky was such a permanent
part of their lives, and was a phenomenon that was often studied and discussed. Many
games originated from the idea of conceptualising stars and heavenly bodies in game-
playing and on papa tākaro (game boards). Mū Tōrere is seen as a combination of the
mythology of the wheke (octopus) with eight kāwai (tentacles) simultaneously merged with
the revered Matariki and other stars.

Expert players were known to be able to ‘see’ over forty moves ahead on the eight kēwai
boards. The game seemed deceptively simple to early Europeans, but this was a
misconception, as there are recordings of groups of settlers being easily beaten by Māori
players for large wagers. Today, mū tōrere games are marketed for worldwide sale by
several companies. Because of its mathematical properties the game is also used by
universities (eg, St Josephs in Philidelphia, U.S.) and other educational institutes around the
world.

Rules

The object of the game is to move your pieces into positions so as to prevent your opponent
from being able to move. The game is played by two players on a papa tākaro, or scribbled
into clay or sand on the ground. There are usually eight kēwai/kāwai (points) on a board
shaped like an eight-pointed star, although some tribes played with other forty kēwai.
However, there is always only one pūtahi. On the eight-point boards each player has four
pieces (usually distinctly coloured stones called perepere). Each player gets to start with all
their pieces on one half of the board, placed on the four kēwai. The first move always has
the starter moving one of their outer pieces into the pūtahi. Each player then moves one
piece at a time. Alternatively, if a piece is on one of the kēwai it can be moved into the
(empty) central pūtahi or onto one of the (empty) flanking kēwai. Players cannot jump over
another piece, or have more than one piece on a kēwai or in the pūtahi at the same time.
Players have to move both of their outer perepere before they can move any of their back
two perepere.

Bibliography
Recommended: (1) Brown, Harko (2008). Ngā Taonga Tākoro: Māori sports and games. New
Zealand: Penguin Group. (790 B877 General Library Matauranga Maori Level G)

(2) Ross Calman, 'Traditional Māori games – ngā tākaro - Games of skill with words and hands', Te
Ara - the Encyclopedia of New Zealand, http://www.TeAra.govt.nz/en/traditional-maori-games-nga-
takaro/page-6 (accessed 3 September 2020)

(3) Elsdon Best, Games and Pastimes of the Maori. Wellington: Government Printer, 1925, p. 110.
Available online at NZETC: http://nzetc.victoria.ac.nz/tm/scholarly/tei-BesGame-t1-body-d5.html

